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Abstract
Direct Numerical Simulations are performed of spatial, three-dimensional, jets of ditferent inlet geometric

configurations for the purpose of quantifying the dispersion characteristics of the flows. Both single phase and
two-phase flow jets are considered. The two-phase flow jets consist of gas laden with liquid drops injected at the inlet.
Drop evaporation ensues due both to the gaseous flow being initially unvitiated by the vapor species corresponding
to the liquid drops, and to drop heating as the initial drop temperature is lower than that of the carrier gas. The
conservation equations for the two-phase flow include complete couplings of mass, momentum, and energy based on
thermodynamically self-consistent specification of the vapor enthalpy, internal energy and latent heat of vaporization.
Inlet geometries investigated are circular, elliptic, rectangular, square and triangular. The results focus both on the
different dispersion achieved according to the inlet geometry, as well as on the considerable change in the flow field

due to the presence of the drops.

Introduction

It has been know for some time that single-phase
flow jets with non-circular inlets are characterized by
their inherent ability to entrain more fluid than those hav-
ing circular inlets. The experimental studies of Gutmark
et al. [5], Schadow et al. [22], Gutmark and Ho [6], Ho
and Gutmark [9], Gutmark et al. [7], Hussain and Hu-
sain [10], Husain and Hussain [11] and Gollahalli et al.
[2] have established numerous features of the mixing en-
hancement of non-circular jets. These jets were either el-
liptic or issued from corner-containing geometries. Their
superior mixing ability was attributed to the accompany-
ing secondary flows which result either from the curva-
ture variation in the azimuthal direction, or from the in-
stabilities produced by the corners through the asymmet-
ric distribution of pressure and mean flow field. In both
cases, the coherence of the jet structures is destroyed
(e.g. Schadow et al. [22]), resulting in larger mixing.
For elliptic jets, azimuthal curvature variation of vorti-
cal structures produces non-uniform self-induction and
three-dimensional structures resulting in spreading rates
becoming larger in the minor axis plane compared to the
major axis, producing axis switching. Depending on the
specific corner-containing geometry, the axis switching
phenomenon might not necessarily happen (equilateral
triangle inlets display axis switching, but square ones
do not), however, the corners promote the formation of
fine-scale turbulence which enhances mixing. These ex-
perimental results were confirmed by a large number of
numerical predictions. Examples of such computational
studies are those of Koshigoe et al. [13], [14], Grinstein
and DeVore [3], Tam and Thies [25], Husain and Hussain
[12] and Miller et al. [15]. All these studies were devoted
to single-phase flows. In contrast, the present investiga-
tion is devoted to two-phase flows. The intention here
is to exploit the superior mixing characteristics of non-

circular jets as a means of enhancing spray dispersion
and furthermore mixing of the evaporated species with
the ambient gas.

The paper is organized as follows: We first recall
some aspects of the formulation of Miller and Bellan
[17], [18] and highlight the differences in the modeling
of the heat and mass fluxes between the present formu-
lation and the aforementioned work. Furthermore, we
briefly explain the departures in the treatment of bound-
ary conditions between the confined shear layer investi-
gated in the previous studies and the present investiga-
tion of a free jet. The initial conditions are documented
next. Results, particularly those documenting the differ-
ences between single-phase jets and two-phase jets are
then discussed. Finally, in the last section we state our
conclusions and make recommendations for further in-
vestigations.

Model

The mathematical description of two-phase flows has
followed two distinct methods. The first, mainly reserved
for dilute flows (i.e. small condensed phase volume frac-
tion), is the Eulerian - Lagrangian method whereby the
gas is described in the frame of the observer (i.e. Eule-
rian frame) and the condensed particles are followed on
their trajectories (i.e. Lagrangian frame). In the other
method, both gas and condensed phase are considered
as continuum flows, and they are both followed in the
Eulerian frame. The present approach adopts the former
technique, emulating the study of Miller and Bellan {17],
[18] in the context of mixing layers. The conservation
equations are solved by the technique of Direct Numer-
ical Simulation (DNS) originally introduced for single-
phase flows, and meaning that all length and time scales
of the flow are resolved without resorting to either time
averaged or subgrid turbulence models. In this respect,
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even the present single-phase flow simulations are dif-
ferent from those of Grinstein and DeVore [3], Grinstein
and Kailasanath [4] and Miller et al. [15], which all con-
tained numerical dissipation that acted akin to subgrid
fluctuations.

In the realm of two-phase flows the term DNS has
been coined by Squires and Eaton [23], [24], to mean
that all length scales of the flow are resolved, but that the
condensed phase particles are treated as point sources.
This terminology reflects the current impossibility, due
to computer memory and computational time constraints,
of solving the exact equations inside the drops and in
their immediate vicinity when tracking a very large num-
ber of drops (e.g. ~ O(10%) — O(108)), even if the cal-
culations are performed in a small domain and for a rela-
tively small (~ 400) Reg. This situation leads to assum-
ing the drops much smaller than the Kolmogorov scales,
Mk, and treating them as point forces and sources. Ad-
ditional to the point source assumption, other restrictions
are here imposed to make the problem computationally
tractable: (i) the drops are spherical, (ii) the ensemble of
drops has negligible volume fraction, (iii) there are no
interactions among drops, and (iv) there is no drop colli-
sion, breakup, or coalescence. The gas phase equations
are completely coupled to the equations for the drops
in that mass, momentum and energy are exchanged be-
tween the two phases. To describe a single drop evolu-
tion, we adopt the validated model of Miller et al. [16].
In this model, the momentum coupling between drops
and flow occurs through the drag force (i.e. Basset his-
tory, added mass, lift, Magnus and other forces are ne-
glected), and the internal droplet temperature is uniform
with heat transfer to the drop occurring through convec-
tion and conduction.

Gas phase conservation equations

The compressible form of the governing equations
for the gas phase, including mass, momentum and energy
coupling are
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where g¢; is the heat flux, Jy; is the molar flux, ps; is
the gas phase density, u; is the gas phase velocity, pg
is the thermodynamic pressure, T¢; is the gas tempera-
ture, 7;; is the viscous stress tensor (with viscosity p),
Ec = ec + %uiui is the total gas energy (internal e
and kinetic $u;u;), and Yy is the mass fraction of the
evaporated liquid species. Also, W denotes the molecu-
lar weight, §;; is the Kronecker delta function, and R, is
the universal gas constant. The right-hand side terms Sy,
Srr.i and Sy are the coupling terms between the gas
and the condensed phase, to be discussed below. Sub-
scripts C' and V' refer to the carrier gas and the vapor
emitted by the drops, respectively.

pa = peltu [

Individual droplet conservation equations )

The Lagrangian equations describing the transient
displacement (X;), velocity(v;), temperature (T,;) and mass
(my) of a single droplet are those derived by Miller and
Bellan, 1999:
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where the subscript d denotes individual drop conditions,
pr, is the liquid density, mg is the drop mass, the droplet
time constant for Stokes flow is 74 = p;,D?/ (18u¢)
with D being the droplet diameter, } is the heat trans-
fer rate to the drop which is driven by the local differ-
ence in temperature between drop and gas, C/, is the heat
capacity of the liquid, whereas Ly is the latent heat of
evaporation. The gas mixture heat capacity is calculated
as Cpo = (1 = Yv)Cp o + Yy Cp v, where Cp ¢ and
Cp,v are the heat capacities of the carrier gas and vapor,
respectively. The gas phase Prandt]l and Schmidt num-
bers are Prg = ugCh.c/Ac and Scg = pe/ (pclv).
The drag force is driven by the local slip velocity vector
Uug1,; = Uu; — v; and the Stokes drag in eq. 7 is empiri-
cally corrected for finite droplet Reynolds numbers; ba-
sically, f; is function of a slip velocity based Reynolds
number and a ‘blowing’ Reynolds number related to the
velocity of the mass evaporated from the drop; see [17].
The Nusselt (Nu) and Sherwood (Sh) numbers are em-
pirically modified for convective corrections to heat and



mass transfer based on the Ranz-Marshall correlations;
see [17] for details. The function fy = 3/(e® — 1) is
an analytical evaporative heat transfer correction to the
solid sphere Nusselt number, where the non-dimensional
evaporation parameter J, given by

g _(3Para) e _ (pPre) D
- 2 mq 8uc dt '

(10)
is constant for drops obeying the ‘D? law’ (see [16]).

Source terms
The phase-coupling terms appearing in eqs. | -4 are
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where hy ; is the evaporated vapor enthalpy at the droplet
surface, and the drag force F;, Q) and rhq are specified
by the modeled droplet conservation equations, egs. 7 -
9. The summations are over all droplets residing within
a local numerical discretization volume AV, and em-
ploy a geometrical weighting factor, w, which is used
to proportionally distribute the individual droplet contri-
butions to the eight nearest neighbor surrounding grid
points (i.e., corners of the computational volume AV,)
according to the respective distance of the drop from the
corners of the computational volume.

Fluxes, internal energy and latent heat

According to Hirshfelder et al. [8], the general form
of the molar and heat fluxes, in absence of Soret and Du-
four effects (here neglected, owing to the atmospheric
pressure conditions), is

T'g 0Y,
Jv; = —va[}—,g—ag‘;— + Yo (Yy (14)
YY) FLE -1 F‘G“ip“h
me my p 8xj
o7

where I'¢ and )\g are the Fickian diffusion coefficient
and the constant gas phase thermal conductivity, respec-
tively. Here ho and hy are the enthalpies of the pure
gases

he = CpcTo,  hy =CovIc+hYy,  (16)

with the mixture enthalpy defined by

h=e+p/p=CT+ h%-YV = hcYe + hyv'Yy.
(17)

We note that the present formulation, due to Okong’o
and Bellan [20], is more general than that of Miller and
Beilan [17], [18], in that here the pressure gradient term
in eq. 14 and the enthalpy carried by the molar fluxes
term in eq. 15 are included. Although the pressure gradi-
ent term may be very small, and as a result has been ne-
glected in the calculations below, the enthalpy carried by
the molar fluxes may rival the thermal conductivity term
under low T conditions such as those studied herein
(see Okong’o and Bellan [20]).

For thermally perfect species and calorically perfect
gas (i.e. constant heat capacities at constant pressure)

hy,s = CpvTu+ hY, (18)
Ly =hY — (Cp — Cpv) T, (19)

ec = (1 =Yv)[CocTs] + Yv[CovTe +RY]. (20)

The drop temperature is uniform due to the assumption
of infinite liquid thermal conductivity, and thus Ty ; =
T,

Using the above definitions, the phase coupling terms
may now be expressed as:
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where the time derivatives express the total rates of change
of the individual drop mass, momentum and total energy,
respectively.

Boundary conditions

The adopted boundary conditions are based on the
Navier-Stokes Characteristic Boundary Conditions de-
rived by Baum et al. [1], similar to [17]. Compared to the
studies of [17], [18] and [19], the present simulations are
of a 3D free, viscous subsonic jet flow. In this situation,
there is one inflow boundary at z; = 0, and the other
five boundaries conditions are of type outflow. For phys-
ical consistency and well-posedness, the Euler equations
(on which the relationships of [1] are based), must have
six boundary conditions at the inflow. Threfore, we the
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impose the value of the gas density, the vapor mass frac-
tion and the three components of the velocity. The addi-
tional "numerical” or *soft’ boundary condition is found
from the energy equation. At the outflow boundaries, we
chose subsonic non-reflecting boundary conditions. For
the Euler equations, it is sufficient to impose the pressure
at infinity, po, [1]. To complete the boundary conditions
with the viscous conditions necessary for the NS equa-
tions, here we chose the normal derivative of the tangen-
tial stresses, the normal heat flux, and the normal vapor
mass fraction flux to be all null.

At corners, the imposed boundary conditions in a
given direction are consistent with the direction of the
flow, being either inflow or outflow.

Flow configuration and initial conditions

The geometric configuration is illustrated in Fig. 1
for the special case of a circular inlet, and the coordinates
Z1, 22, and x3 are defined. The computational domain
dimensions are Ly = 2L, = 2L3 = 8d; = 0.16m.
The equivalent jet diameter d; (which is the diameter
of the circle that has the same area as the non-circular
inlet sections) is chosen to be 0.02 m for all geometrical
configurations. The Mach number is defined as

M= Uo/\/RuTG,OC c/(WeCy ) (24)

where the jet Mach number, M; = 0.35, is based on
Uy = Uy, and the ambient Mach number, M, = 0.05,
based on Uy, The velocity Uy = 131 m/s is the con-
stant inlet gas velocity, being determined from the spec-
ified value of M, and U, = 18.7 m/s is the constant
gas velocity in the freestream, being determined from the
specified value of My,. To avoid a spatial discontinu-
ity, the two disparate velocities are connected through a
tanh function with a width of d;/25 in the direction of
initial discontinuity, z2. In eq. 24, T o is the initial gas
temperature and C,, ¢ is the carrier gas heat capacity at
constant volume.

The initial jet Reynolds number, Re; = pg (AUpd,
/e = 500, where AUy = U — Us. The initial flow
field is isobaric with pg = putm, and isothermal with
Too = 400 K, and pg o = 1 kg/m®. The droplets are
inserted into the domain, randomly distributed and with
velocity v = /o2 + v3 + vg = 0.75U}, through the jet
orifice. The drop size is uniform (portraying a monodis-
perse spray), with initial diameter of 50um and initial
temperature Ty o = 300 K. The mass flow rate of liquid
is 0.012 kg/s and the mass loading, representing the ratio
of liquid to air mass, is ML = 0.29.

The two species chosen for this study are air for the
carrier gas and decane for the liquid /vapor hydrocar-
bon. Initially, the freestream mass fraction of the evapo-
rated species is null, and the equivalent value in the jet
is 0.03; a tanh function of same width as that of the

initial velocity profile is used to avoid a spatial discon-
tinuity in the mass fraction. All heat capacities, the gas
Prandtl number and vapor reference enthalpy are eval-
uated at 400 K. The Lewis number (Leg) is assumed
to be unity (i.e. Scc = Prg). The gas phase viscos-
ity is determined through the specification of Re;. Due
to the enlarged viscosity value inherent in all DNS cal-
culations, the species can be labeled ‘pseudo-air’ and
‘pseudo-decane’; however, effects due to realistic air-
hydrocarbon molecular weight ratios, heat capacity ra-
tios and latent heat magnitude are retained herein. The
constant property values used in the simulations are pro-
vided in Table 1. :

The general numerics discussed in detail in [17] and
[18] is used here with minute changes. All simulations
are performed on a SGI Origin 2000 parallel supercom-
puter using 32 processors with a 8 x 2 x 2 spatial decom-
position. In all simulations the uniform grid resolution is
240 x 180 x 180 in the z,, xo and x3 directions, so as to
resolve the smallest scales for the specified value of Re ;.

Results
Non-circular single-phase flow jets have been stud-
ied extensively numerically, and their distinctive features
are already established. However, to document their par-
ticular aspects of interest in this study, simulations of
single-phase flows are here performed for the same con-
figuration as those of the two-phase flow simulations, so
as to allow meaningful comparisons. Additional to docu-
menting the effect of the drops on the flow through com-
parisons of single- and equivalent two-phase flow simu-
lations, we are also interested in exploring the different
drop dispersion patterns, by illustrating the instantaneous
Eulerian drop number density
Wy

AV,
o1

according to the inlet geometry. The drop dispersion pat-
terns influence the distribution of the evaporated species,
and thus mixing. To quantify mixing, we focus on the
product thickness

8y = / / /V pY,dV (26)

in mass units, where Y, = 2min(Yy, Y¢), is a direct
consequence of molecular mixing. All these quantities
will be evaluated at the non-dimensional time ¢* = tAUj
/d;, corresponding to the achievement of a steady-state
condition based on the mass flux entering and exiting the
domain, ;. Moreover, it is also important to document
contours of instantaneous liquid mass per unit volume,
(47/3)nR3p, , and vapor mass fraction at different stream-
wise locations.

As an example of the results, in Fig. 2-4 we illus-
trate the non-dimensional streamwise velocity distribu-

n =

(25)
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tions in several vy — @y planes, and the equivalent plots
for the nondimansional streamwise vorticity are in Figs.
3-7. These, will be discussed and interpreted for different
cross-stream section geometries.

Summary

The dispersion and mixing of liquid drops in three-
dimensional circular and non-circular gaseous jets has
been investigated through Direct Numerical Simulation

at Reynolds numbers characteristic to pre-transitional flows.

The conservation equations were formulated in an Eu-
lerian frame for the gas and in a Lagrangian frame for
the drops with two-way coupling whereby the flow influ-
ences the drops and the drops impact the flow through
mass, momentum, speciesand energy transfer. In all
simulations, drops of 50 um diameter were randomly in-
troduced at the inlet with null relative velocity with re-
spect to the carrier flow. The mass flow rate of drops was
the same in all simulations, as were the initial Reynolds
number and the Mach number of the flow. The drop ini-
tial temperature was 300 K and the gas temperature was
400K.

To quantify the influence of the drops on the flow, a
separate set of simulations were performed for the same
geometric configuration and initial conditions for gaseous
jets. Results from these simulations show the beneficial
effect of the non-circular geometries upon drop disper-
sion and vorticity creation in the flow, influencing mix-
ing.
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Figure 2: Non-dimensional velocity, u,/U; for the
square jet at x; /d; = 0.
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Figure 3:

square jet at z1 /dy = 2.5.

X,

Figure 5: Non-dimensional vorticity, w1/wmax for a
square jet at 1 /d; = 0. Wiax is the maximum vorticity
in the domain.

Non-dimensional velocity, u1/U; for the
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Figure 4: Non-dimensional velocity, u;/U; for the & % wi/Wmax

square jet at z1 /d; = 5.

square jet at x1/dy = 2.5. Wpax is the maximum vor-
ticity in the domain.
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Figure 7: Non-dimensional vorticity, wi/wmax for a
square jet at £1/dy = 5. Wmax is the maximum vorticity
in the domain.



